Greedy Policy Search: A simple baseline for learnable test-time augmentation

Dmitry Molchanov Alexander Lyzhov Yuliya Molchanova Arsenii Ashukha Dmitry Vetrov

Real-world risk-sensitive scenarios require reliable machine learning models 🧟 💊 🛓 🚗

- robustness under dataset shift
- reporting a level of confidence in a prediction

Original Image

What the network sees during training

Data augmentation

Previously: hand-crafted data augmentation

- Random resize + crop + flip
- Color jitter

. . .

Now: learnable data augmentation policies

- AutoAugment (Cubuk, et al. 2018)
- RandAugment (Cubuk, et al. 2019)
- Adversarial AutoAugment (Zhang, et al. 2019)
- AugMix (Hendrycks, et al. 2019)

Transformation Identity ShearX ShearY TranslateX TranslateY Rotate Autocontrast Solarize SolarizeAdd Posterize Contrast Brightness Color Sharpness Cutout

Transformations available for learnable augmentations

5

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Imagenet classification with deep convolutional neural networks, 2012

Conventional test-time augmentation

- 5-crop / 10-crop evaluation
- Same augmentation as during training

RandAugment(N=3, M=45)

Learnable test-time augmentations

Given a fixed trained DNN...

...learn test-time augmentation policy by optimizing the performance on validation data.

How to learn? Greedy selection.

Greedy Policy Search

- 1. Create a pool and collect the predictions on validation set
 - Sample ~1000 random sub-policies with different magnitudes
 - Collect predictions using those sub-policies (1000 x size of validation set)

Greedy Policy Search

- 1. Create a pool and collect the predictions on validation set
 - Sample ~1000 random sub-policies with different magnitudes
 - Collect predictions using those sub-policies (1000 x size of validation set)
- 2. Find an augmentation that works best when added to the current policy
 - Try to add each augmentation to the current policy
 - Average the predictions over the assembled policy to compute the loss
 - Choose the best candidate and add it permanently

Greedy Policy Search: what objective to use?

	GPS criterion	VGG	ResNet110	WideResNet
Acc.(%)	Acc. LL cLL	$\begin{array}{c} 81.17 \pm 0.15 \\ 81.89 \pm 0.07 \\ \textbf{82.21} \pm \textbf{0.17} \end{array}$	$\begin{array}{c} 83.01 \pm 0.18 \\ 83.55 \pm 0.09 \\ 83.54 \pm 0.06 \end{array}$	$\begin{array}{c} 85.71 \pm 0.10 \\ 86.22 \pm 0.05 \\ \textbf{86.44} \pm \textbf{0.05} \end{array}$
cLL	Acc. LL cLL	$\begin{array}{c} -0.837 \pm 0.003 \\ -0.640 \pm 0.001 \\ -\textbf{0.623} \pm \textbf{0.001} \end{array}$	$\begin{array}{c} -0.691 \pm 0.001 \\ -0.560 \pm 0.001 \\ -0.552 \pm 0.001 \end{array}$	$\begin{array}{c} -0.661 \pm 0.003 \\ -0.489 \pm 0.001 \\ -0.479 \pm 0.001 \end{array}$

Calibrated log-likelihood is a much better target than log-likelihood or accuracy!

Greedy Policy Search: what objective to use and why?

Find the optimal magnitude for TTA with RandAugment

Results of in-domain uncertainty estimation

Results under domain shift

Robustness to Common Corruptions and Perturbations, 2019

Do policies transfer?

Search policy on										
	CIFAR10			CIFAR100			Cron/flin			
	VGG	ResNet	WRN	VGG	ResNet	WRN	policy			
, NGG	0.000	-0.002	-0.002	-0.004	-0.003	-0.006	-0.080			
kesNet	0.000	0.000	-0.000	-0.002	-0.001	-0.004	-0.052			
WRN F	0.001	-0.000	0.000	-0.001	-0.000	-0.002	-0.058			
NGG	-0.015	-0.020	-0.008	0.000	-0.010	-0.003	-0.276			
esNet	-0.001	-0.004	-0.001	-0.001	0.000	-0.003	-0.219			
WRN Re	-0.018	-0.015	-0.009	0.001	-0.006	0.000	-0.266			

1.

0

Evaluate policy on CIFAR100 CIFAR10

16

Does it work for ensembles?

Greedy Policy Search: conclusions

- Test-time augmentation policies **can** and **should** be learned.
 - Better predictive performance and log-likelihood
 - Works for a variety of single models and ensembles
 - Transferable policies
 - Using calibrated log-likelihood is a must!
 Likely important for other problems (e.g., NAS and meta-learning)

